- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Roy, Arijit (2)
-
Singh, Gurpreet (2)
-
Ito, Takashi (1)
-
Mujib, Shakir_Bin (1)
-
Owiredu, Paul (1)
-
Skinner, Elise A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The structural integrity of atomically thin two-dimensional molybdenum disulfide (MoS2) is crucial for high-temperature applications, including nanoelectronics and optoelectronics. This study explores the structural stability and electrical performance, under extended thermal exposure in air, of MoS2flakes synthesized via chemical vapor deposition (CVD) and mechanical exfoliation. The MoS2flakes, both CVD-grown and mechanically exfoliated, were subjected to heating at 200 °C with a relative humidity of 60(±5)% for a prolonged period and investigated with atomic force microscopy and Raman spectroscopy. This study shows that CVD-grown flakes developed noticeable cracks after prolonged heating, whereas mechanically exfoliated flakes mostly retained their structural integrity. Also, both types of flakes showed a decrease in layer thickness and lateral size over time, with mechanically exfoliated flakes exhibiting a comparatively smaller reduction in substrate coverage area. In addition, MoS2-based two-terminal devices were subjected to heating at 150 °C for approximately 1100 h, and their electrical characterization revealed a steady rise in current during constant voltage (5 V) conditions. This study enhances our understanding of MoS2stability and provides guidance for improving the reliability of MoS2-based devices in high-temperature electronic applications.more » « lessFree, publicly-accessible full text available October 23, 2026
-
Roy, Arijit; Mujib, Shakir_Bin; Singh, Gurpreet (, ACS Omega)
An official website of the United States government
